الخطوط الأمامية لكرة السلة

شرحدرسالأعدادالمركبة(ComplexNumbers)

شرحدرسالأعدادالمركبة(ComplexNumbers) << المباريات << الصفحة الرئيسية الموقع الحالي

مقدمةعنالأعدادالمركبة

الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهاعادةبالصيغةa+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةحيثi²=-1شرحدرسالأعدادالمركبة

خصائصالأعدادالمركبةالأساسية

  1. الجمعوالطرح:عندجمعأوطرحعددينمركبين،نجمع/نطرحالأجزاءالحقيقيةوالتخيليةبشكلمنفصلمثال:(3+2i)+(1-4i)=(3+1)+(2-4)i=4-2i

    شرحدرسالأعدادالمركبة(ComplexNumbers)

    شرحدرسالأعدادالمركبة
  2. الضرب:نستخدمخاصيةالتوزيعمعتذكرأنi²=-1مثال:(2+3i)(1-2i)=2(1)+2(-2i)+3i(1)+3i(-2i)=2-4i+3i-6i²=2-i-6(-1)=8-i

    شرحدرسالأعدادالمركبة(ComplexNumbers)

    شرحدرسالأعدادالمركبة
  3. القسمة:نضربالبسطوالمقامفيمرافقالمقاملإزالةiمنالمقاممثال:(3+4i)/(1-2i)=[(3+4i)(1+2i)]/[(1-2i)(1+2i)]=(3+6i+4i+8i²)/(1+2i-2i-4i²)=(-5+10i)/5=-1+2i

    شرحدرسالأعدادالمركبة(ComplexNumbers)

    شرحدرسالأعدادالمركبة

التمثيلالهندسيللأعدادالمركبة

يمكنتمثيلالعددالمركبa+biكنقطةفيالمستوىالمركبحيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي

شرحدرسالأعدادالمركبة

الصيغةالقطبيةللأعدادالمركبة

يمكنالتعبيرعنالعددالمركبباستخدامالصيغةالقطبية:z=r(cosθ+isinθ)حيث:-rهوالمقياس(الطول)للعددالمركب-θهيالزاوية(الوسع)التييصنعهامعالمحورالحقيقي

شرحدرسالأعدادالمركبة

تطبيقاتالأعدادالمركبة

  1. فيالهندسةالكهربائيةلحسابدوائرالتيارالمتردد
  2. فيمعالجةالإشاراتالرقمية
  3. فيميكانيكاالكم
  4. فيالرسوماتالحاسوبيةوالتحريك

خاتمة

الأعدادالمركبةتوسعمفهومنظامالأعدادالحقيقيةوتوفرأداةقويةلحلمعادلاتلايمكنحلهاباستخدامالأعدادالحقيقيةفقط.فهمهايتطلبإدراكالعلاقةبينالجزأينالحقيقيوالتخيليوكيفيةالتعاملمعهمفيالعملياتالحسابيةالمختلفة.

شرحدرسالأعدادالمركبة

مقدمةعنالأعدادالمركبة

الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمتمثيلالعددالمركبعادةبالصيغةa+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةالتيتساويالجذرالتربيعيللعدد-1(i²=-1)

شرحدرسالأعدادالمركبة

تاريخالأعدادالمركبة

ظهرتفكرةالأعدادالمركبةلأولمرةفيالقرنالسادسعشرعندماحاولعلماءالرياضياتحلالمعادلاتالتكعيبية.كانجيرولاموكاردانوأولمنأشارإليهافيكتابه"آرسماغنا"عام1545.

شرحدرسالأعدادالمركبة

العملياتالأساسيةعلىالأعدادالمركبة

1.الجمعوالطرح

لجمعأوطرحعددينمركبين،نجمعأونطرحالأجزاءالحقيقيةوالأجزاءالتخيليةبشكلمنفصل:(a+bi)+(c+di)=(a+c)+(b+d)i(a+bi)-(c+di)=(a-c)+(b-d)i

شرحدرسالأعدادالمركبة

2.الضرب

يتمضربالأعدادالمركبةباستخدامخاصيةالتوزيعمعتذكرأنi²=-1:(a+bi)(c+di)=ac+adi+bci+bdi²=(ac-bd)+(ad+bc)i

شرحدرسالأعدادالمركبة

3.القسمة

لقسمةعددينمركبين،نضربالبسطوالمقامفيمرافقالمقام:(a+bi)/(c+di)=[(a+bi)(c-di)]/(c²+d²)

شرحدرسالأعدادالمركبة

التمثيلالهندسيللأعدادالمركبة

يمكنتمثيلالعددالمركبa+biكنقطةفيالمستوىالمركبحيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي

شرحدرسالأعدادالمركبة

الصيغةالقطبيةللأعدادالمركبة

يمكنالتعبيرعنالعددالمركبباستخدامالصيغةالقطبية:r(cosθ+isinθ)حيث:-rهوالمقدار(الطول)للعددالمركب-θهيالزاويةالتييصنعهامعالمحورالحقيقي

شرحدرسالأعدادالمركبة

تطبيقاتالأعدادالمركبة

للأعدادالمركبةتطبيقاتعديدةفي:1.الهندسةالكهربائية(تحليلالدوائرالكهربائية)2.الفيزياء(ميكانيكاالكم)3.معالجةالإشارات4.الرسوماتالحاسوبية5.نظريةالتحكم

شرحدرسالأعدادالمركبة

خاتمة

تعتبرالأعدادالمركبةأداةرياضيةقويةتوسعمفهومناعنالأعدادوتفتحآفاقاًجديدةفيحلالمعادلاتالتيلايمكنحلهاباستخدامالأعدادالحقيقيةفقط.فهمالأعدادالمركبةأساسيللعديدمنالتخصصاتالعلميةوالهندسيةالمتقدمة.

شرحدرسالأعدادالمركبة

الأعدادالمركبةهيمفهومرياضيمتقدميلعبدوراًحيوياًفيالعديدمنمجالاتالرياضياتوالهندسةوالفيزياء.فيهذاالدرس،سنستكشفالأساسياتالمتعلقةبالأعدادالمركبة،تعريفها،خصائصها،وكيفيةالتعاملمعهافيالعملياتالحسابيةالمختلفة.

شرحدرسالأعدادالمركبة

تعريفالأعدادالمركبة

العددالمركبهوعدديمكنالتعبيرعنهبالصيغة:a+biحيث:-aوbأعدادحقيقية-iهيالوحدةالتخيليةالتيتحققالمعادلةi²=-1

شرحدرسالأعدادالمركبة

فيهذاالتعبير:-aيسمىالجزءالحقيقيللعددالمركب-bيسمىالجزءالتخيليللعددالمركب

شرحدرسالأعدادالمركبة

التمثيلالهندسيللأعدادالمركبة

يمكنتمثيلالأعدادالمركبةعلىالمستوىالديكارتي(مستوىالأعدادالمركبة)حيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي

شرحدرسالأعدادالمركبة

العملياتالأساسيةعلىالأعدادالمركبة

1.الجمعوالطرح:

لجمعأوطرحعددينمركبين،نجمعأونطرحالأجزاءالحقيقيةوالأجزاءالتخيليةكلعلىحدة.

شرحدرسالأعدادالمركبة

مثال:(3+2i)+(1-4i)=(3+1)+(2-4)i=4-2i

شرحدرسالأعدادالمركبة

2.الضرب:

لضربعددينمركبين،نستخدمخاصيةالتوزيعمعتذكرأنi²=-1.

شرحدرسالأعدادالمركبة

مثال:(2+3i)×(1-2i)=2×1+2×(-2i)+3i×1+3i×(-2i)=2-4i+3i-6i²=2-i-6(-1)=2-i+6=8-i

شرحدرسالأعدادالمركبة

3.القسمة:

لقسمةعددينمركبين،نضربالبسطوالمقامفيمرافقالمقام.

شرحدرسالأعدادالمركبة

مثال:(1+2i)÷(3-4i)=[(1+2i)(3+4i)]÷[(3-4i)(3+4i)]

شرحدرسالأعدادالمركبة

خصائصالأعدادالمركبة

  1. لكلعددمركبمرافق(Conjugate)يكونبالصيغةa-bi
  2. معيارالعددالمركب(Modulus)هو√(a²+b²)
  3. يمكنالتعبيرعنالعددالمركببالصيغةالقطبية:r(cosθ+isinθ)

تطبيقاتالأعدادالمركبة

تستخدمالأعدادالمركبةفي:-تحليلالدوائرالكهربائية-معالجةالإشارات-ميكانيكاالكم-الرسوماتالحاسوبية-حلالمعادلاتالتفاضلية

شرحدرسالأعدادالمركبة

الخلاصة

الأعدادالمركبةتوسعمفهومنظامالأعدادالحقيقيةوتوفرأداةقويةلحلالعديدمنالمسائلالرياضيةوالعلميةالتيلايمكنحلهاباستخدامالأعدادالحقيقيةفقط.فهمالأعدادالمركبةوخصائصهايفتحالبابأمامالعديدمنالتطبيقاتالمتقدمةفيالعلوموالهندسة.

شرحدرسالأعدادالمركبة

الأعدادالمركبة(ComplexNumbers)هيأحدالمفاهيمالأساسيةفيالرياضياتالتيتمتدجذورهاإلىالحاجةلحلالمعادلاتالتيلايوجدلهاحلفيمجموعةالأعدادالحقيقية.فيهذاالدرس،سنتعرفعلىماهيةالأعدادالمركبة،وكيفيةتمثيلها،والعملياتالحسابيةالأساسيةالتييمكنإجراؤهاعليها.

شرحدرسالأعدادالمركبة

ماهيالأعدادالمركبة؟

العددالمركبهوعدديمكنالتعبيرعنهبالصيغة:
[z=a+bi]
حيث:
-aوbهماعددانحقيقيان.
-iهيالوحدةالتخيلية،وتحققالمعادلة(i^2=-1).

شرحدرسالأعدادالمركبة

يُطلقعلىaاسم"الجزءالحقيقي"للعددالمركب،بينمايُسمىb"الجزءالتخيلي".

شرحدرسالأعدادالمركبة

تمثيلالأعدادالمركبة

يمكنتمثيلالأعدادالمركبةبعدةطرق،منها:

شرحدرسالأعدادالمركبة
  1. التمثيلالجبري:(z=a+bi)
  2. التمثيلالهندسي(المستوىالمركب):حيثيُرسمالعددكنقطةفيالمستوىالإحداثي،حيثالمحورالأفقييمثلالجزءالحقيقي،والمحورالرأسييمثلالجزءالتخيلي.

العملياتالأساسيةعلىالأعدادالمركبة

1.الجمعوالطرح

لجمعأوطرحعددينمركبين،نجمعأونطرحالأجزاءالحقيقيةوالتخيليةبشكلمنفصل:
[(a+bi)+(c+di)=(a+c)+(b+d)i]
[(a+bi)-(c+di)=(a-c)+(b-d)i]

شرحدرسالأعدادالمركبة

2.الضرب

يتمضربعددينمركبينباستخدامخاصيةالتوزيعمعالأخذفيالاعتبارأن(i^2=-1):
[(a+bi)\cdot(c+di)=ac+adi+bci+bdi^2=(ac-bd)+(ad+bc)i]

شرحدرسالأعدادالمركبة

3.القسمة

لقسمةعددينمركبين،نضربالبسطوالمقامفيمرافقالمقام(يتمتغييرإشارةالجزءالتخيلي):
[\frac{ a+bi}{ c+di}=\frac{ (a+bi)(c-di)}{ c^2+d^2}]

شرحدرسالأعدادالمركبة

المرافقوالقياسللعددالمركب

  • المرافقالمركب:إذاكان(z=a+bi)،فإنمرافقههو(\overline{ z}=a-bi).
  • القياس(المقدار):يُحسبباستخدامنظريةفيثاغورس:
    [|z|=\sqrt{ a^2+b^2}]

تطبيقاتالأعدادالمركبة

تستخدمالأعدادالمركبةفيالعديدمنالمجالاتمثل:
-الهندسةالكهربائية(تحليلالدوائرالمتناوبة).
-الفيزياء(ميكانيكاالكم،معادلاتالموجة).
-معالجةالإشارات(تحليلفورييه).

شرحدرسالأعدادالمركبة

الخلاصة

الأعدادالمركبةتوسعمفهومالأعدادالحقيقيةوتسمحبحلمعادلاتمثل(x^2+1=0)التيليسلهاحلفيالأعدادالحقيقية.بفهمأساسياتهاوتمثيلهاوالعملياتعليها،يمكنتطبيقهافيالعديدمنالمجالاتالعلميةوالتقنية.

شرحدرسالأعدادالمركبة

هذاالدرسيقدممقدمةشاملةللأعدادالمركبة،وإذاكنتترغبفيتعميقفهمك،يمكنكدراسةمواضيعمثلصيغةأويلروالأشكالالقطبيةللأعدادالمركبة.

شرحدرسالأعدادالمركبة

قراءات ذات صلة

يوفنتوس وإنتر ميلانقصة التنافس الأسطوري في الكالتشيو

موعدقرعةدور16دوريابطالاوروبا2025بتوقيتالجزائر

نهائيدوريأبطالأوروبا2022ملحمةلاتُنسىبينريالمدريدوليفربول

بدايةالانتقالاتالشتوية2023تحليلشامللأبرزالصفقاتوالتوقعات

نهاية سوق الانتقالات الإنجليزيتحليل شامل وتأثيراته على الأندية واللاعبين

الدوريالإيطالي2024موسممنالمنافسةالشرسةوالإثارةالمتجددة

موعدنهائيدوريأبطالأفريقيا2022تفاصيلالبطولةالكبرى

ترتيبالأنديةدليلشامللفهمتصنيفالفرقفيالبطولاتالرياضية